Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media.
نویسندگان
چکیده
The development of a highly parallel simulation of the acousto-optic effect is detailed. The simulation supports optically heterogeneous simulation domains under insonification by arbitrary monochromatic ultrasound fields. An adjoint method for acousto-optics is proposed to permit point-source/point-detector simulations. The flexibility and efficiency of this simulation code is demonstrated in the development of spatial absorption sensitivity maps which are in broad agreement with current experimental investigations. The simulation code has the potential to provide guidance in the feasibility and optimization of future studies of the acousto-optic technique, and its speed may permit its use as part of an iterative inversion model.
منابع مشابه
Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media.
We show that a multiexponential model for time-resolved fluorescence allows the use of an absorption-perturbation Monte Carlo (MC) approach based on stored photon path histories. This enables the rapid fitting of fluorescence yield, lifetimes, and background tissue absorptions in complex heterogeneous media within a few seconds, without the need for temporal convolutions or MC recalculation of ...
متن کاملEnergy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations
The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...
متن کاملExperimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
The goal of the work is to experimentally verify Monte Carlo modeling of fluorescence and diffuse reflectance measurements in turbid, tissue phantom models. In particular, two series of simulations and experiments, in which one optical parameter (absorption or scattering coefficient) is varied while the other is fixed, are carried out to assess the effect of the absorption coefficient (mu(a)) a...
متن کامل1 Ja n 20 09 Detection of the tagged or untagged photons in acousto - optic imaging of thick highly scattering media by photorefractive adaptive holography
Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. W...
متن کاملHybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
Light reflectance by semi-infinite turbid media is modeled by a hybrid of Monte Carlo simulation and diffusion theory, which combines the accuracy of Monte Carlo simulation near the source and the speed of diffusion theory distant from the source. For example, when the turbid medium has the following optical properties--absorption coefficient 1 cm-1, scattering coefficient 100 cm-1, anisotropy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2012